Entropy Minimization, Hilbert′s Projective Metric, and Scaling Integral Kernels
نویسندگان
چکیده
منابع مشابه
Limited-memory projective variable metric methods for unconstrained minimization
A new family of limited-memory variable metric or quasi-Newton methods for unconstrained minimization is given. The methods are based on a positive definite inverse Hessian approximation in the form of the sum of identity matrix and two low rank matrices, obtained by the standard scaled Broyden class update. To reduce the rank of matrices, various projections are used. Numerical experience is e...
متن کاملProjective curvature and integral invariants
In this paper, an extension of all Lie group actions on R to coordinates defined by potentials is given. This provides a new solution to the equivalence problems of curves under the projective group and two of its subgroups. The potentials correspond to integrals of higher and higher order producing an infinite number of independent integral invariants. Applications to computer vision are discu...
متن کاملMetric Learning with Multiple Kernels
Metric learning has become a very active research field. The most popular representative–Mahalanobis metric learning–can be seen as learning a linear transformation and then computing the Euclidean metric in the transformed space. Since a linear transformation might not always be appropriate for a given learning problem, kernelized versions of various metric learning algorithms exist. However, ...
متن کاملSimulated Entropy and Global Minimization
ABSTRACT: Non-linear programming deals with the problem of optimizing an objective function in the presence of equality and inequality constraints. Most of the classical deterministic methods encounter two major problems: (i) the solution obtained is heavily dependent on the starting solution: and (ii) the methods often converge to inferior local optima. This paper examines the relationship bet...
متن کاملCOLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS
In this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytical solutions of a particular class of Fredholm-Volterra integral equations (FVIEs) are smooth.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1993
ISSN: 0022-1236
DOI: 10.1006/jfan.1993.1080